

Operating Manual

Extension module for electrosolenoid operated valves with explosion protection of the valve series K10 Ex to K50 Ex

Table of contents

1	Gene	ral	4
1.1	L A	ditional manual for electro-solenoid actuated Ex-valves	4
1.2		fety instructions	
1.3	B N	ote	4
1.4	ł El	J- conformity	4
1.5		dmission according to ATEX and IECEx- Scheme	
	1.5.1	Ignition Protection type	
	1.5.2	Used norms	
1.6		quipment Protection Level (EPL)	
1.7		agnet labelling	
	1.7.1	Labelling	
	1.7.2	Example of labelling of name plate for ex-magnets	
2	Elect	rical characteristics	7
2.1		ata for magnet variants	7
	2.1.1	For temperature class T3	7
	2.1.2	For temperature class T4	8
3	Devi	e description	9
4	Mour	iting	9
4.1	l D	efinition single valve	9
4.2	2 M	agnet row	9
4.3	3 Va	ılve	9
5		nical data and operating conditions	
5.1		peration mode/ duty cycle	
	5.1.1	continous	10
	5.1.2	intermittent	10
	5.1.3	Temperature and duty cycle limits	11
5.2	2 Te	erminal box	11
5.3		ectrical Installation	
	5.3.1	Terminal connection	
	5.3.2	Connection cable (variant with integrated rectifier board)	13
	5.3.3	Potential equalisation	13
	5.3.4	Maximum permissible conductor current	13
	5.3.5	Cable gland	13
	5.3.6	Conduit Adapter	14
	5.3.7	Special conditions for installation	14
	5.3.8	Connection the power supply	
	5.3.9	Protective conductor inside	
6		nissioning	
7		ation and maintenance	
	-		
7.1		elp with malfunctionsaintenance	
7.2	. IVI	atitterialice	10

7.3 Operation duration	
7.4 Repair magnet/ valve	17
7.4.1 Disassemlby	17
8 Appendix	18
8.1 Mounting of cable in gland	19
8.2 Torque details	
9 ATEX-certificate	
10 IECEx-certificate	
10 IEGEX-certificate	& &
Figure 1-1: Nameplate Ex-Magnet with example labelling	6
Figure 3-1: valve schematic	
Figure 5-1: Formulas for calculating duty cycle	10
Figure 5-2: Connection Potential equalisation outside	
Figure 5-3: Terminal box	
Figure 8-1: Mounting instructions for cable	
Figure 8-2: Mounting instructions for cable	
Figure 8-3: Torque specifications for installation	21
Figure 9-1: ATEX-certificate page 1 Fehler! Textmarke nicht	
Figure 9-2: ATEX-certificate page 2 Fehler! Textmarke nicht	
Figure 10-1: IECEx-certificate only first page Fehler! Textmarke nicht	t definiert.
Table 1-1:EPL-categorisation / device category	5
Table 5-1: Size and power dependent operating conditions for gasFehler! Textm	arke nicht
definiert.	
Table 5-2: Size and power dependent operating conditions for dustFehler! Textm	arke nicht
definiert.	
Table 5-3: maximum current load depending on the cable cross-section	
Table 7-1: Help with malfunctions	16

Created by: Martin Bogert Revision date: 30 October 2025

1 General

1.1 Additional manual for electro-solenoid actuated Ex-valves

This extension to the general operating instructions applies to electromagnetically actuated valves that are suitable for use in potentially explosive atmospheres of categories "two" and "three". It supplements the installation and operating instructions of the general operating instructions for coaxial valves. Additional information sheets are attached to the instructions for modifications or extensions.

The operating and installation instructions for non-explosion-proof valves and their technical specifications apply unchanged, unless they are excluded or replaced by these instructions. To ensure that our products function properly, the instructions and information in these and the general operating instructions must be followed. Non-compliance will invalidate the warranty and legal liability for the devices.

All electromagnets are manufactured and tested according to recognised industry standards and in accordance with VDE guidelines. They therefore fulfil the general safety regulations.

The solenoids are designed as electromagnetically operated actuators that do not pose any danger when used as intended (e.g. as valve actuators).

1.2 Safety instructions

You must have read and understood the complete operating instructions before installation and commissioning.

Only personnel specially trained in "Explosion protection" may carry out assembly, installation, commissioning and maintenance.

The special conditions described under point *7.4 Repair magnet/ valve* apply to overhaul and repair.

ATTENTION!

The customer is responsible for ensuring compliance with all applicable provisions, regulations, standards and laws that apply to his operating conditions and place of use.

1.3 Note

In order to maintain the flexibility of our valve series, the solenoid has been certified for device category 2G and 2D. The solenoids are designed exclusively for use as electromagnetic actuators that do not pose any danger when used as intended.

The following description applies to all valves in the "K 10" to "K 50" series with a solenoid assembly of type K_. The basic structure of the individual solenoid assembly is identical. The individual solenoid assemblies differ only in their size.

1.4 EU- conformity

If required, the EU type examination certificate can be downloaded from www.co-ax.com.

1.5 Admission according to ATEX and IECEx- Scheme

The valve has been tested and certified in accordance with the ATEX and IECEx standards for potentially explosive atmospheres in accordance with the standards listed under *1.5.2 Used norms*. The number of the certificates is:

TPS 21 ATEX 083811 0009 X IECEx TPS 21.0005X

Created by: Martin Bogert Revision date: 30 October 2025

1.5.1 Ignition Protection type

Gas: Equipment protection by type of protection **eb** according to IEC 60079-7 and **mb** according to IEC 60079-18

Dust: Equipment protection by type of protection **mb** according to IEC 60079-18 and **tb** according to IEC 60079-31

Based on the use of encapsulation, the limitation of the maximum surface temperature of the enclosure and the sealing of the enclosure (degree of protection \geq IP 64) in accordance with IEC 60529.

1.5.2 Used norms

- EN IEC 60079-0:2018
 Explosive atmospheres general requirements
- EN IEC 60079-7:2015/A1:2018
 Explosive atmospheres Equipment protection by increased safety "e"
- EN 60079-18:2015/A1:2018
 Explosive atmospheres Equipment protection by encapsulation "m"
- EN IEC 60079-31:2014 Explosive atmospheres Equipment dust ignition protection by enclosure "t"
- IEC 60529:1989/A2:2013/Cor1:2019 (EN 60529:1991/A2:2013/AC:2019-02)
 Degrees of protection provided by enclosures (IP-Code)

1.6 Equipment Protection Level (EPL)

The electromagnet is approved for use in the following potentially explosive atmospheres:

EN IEC 60079-0		Richtlinie 2014/34/EU		EN 60079-10-X
EPL	Group	devicegroup	Device category	Zone
Gb			2G	1
Gc		11	3G	2
Db	111	II	2D	21
Dc	III		3D	22

Table 1-1:EPL-categorisation / device category

1.7 Magnet labelling

All necessary data relating to the solenoid can be found on the name plate and in the operating instructions. The labelling of the solenoid type may contain additions that relate to the application (operating conditions of the valve) but have no significance for the solenoid itself or its design. Example: T_{amb} indicates both the ambient temperature and the medium temperature of the valve. Due to the design, this may be lower than specified in the solenoid approval.

Created by: Martin Bogert Revision date: 30 October 2025

1.7.1 Labelling

II 2G Ex eb mb IIC T* Gb
II 2D Ex mb tb IIIC T* °C DB

Breakdown of the labelling:

- II Explosion protection group II.
- 2G Equipment category 2 for gas
- 2D Equipment category 2 for dust
- Ex Ex-Symbol
- eb; mb; tb Applied types of protection with a high level of protection b
- IIC Suitable for gas groups IIC
- IIIC Suitable for dust of the groups IIIC.
- T4 / T3 Suitable for temperature classes T4 or T3 see name plate (Gas).
- Adjust temperatures for maximum permissible surface temperature see nameplate (dust)
- Gb EPL of group II
- Db EPL of group III
- An asterisk (*) stands for a value that results from the operating conditions and the resulting design

1.7.2 Example of labelling of name plate for ex-magnets

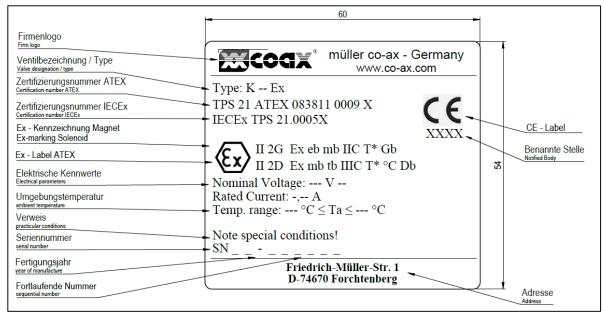


Figure 1-1: Nameplate Ex-Magnet with example labelling

The nameplates for valves are described in detail in the "General operating instructions for valves". These can be downloaded at www.co-ax.com.

The respective values for voltage and current consumption can be found in the table in the appendix of the operating instructions. The temperature range values apply to T3 from -30°C to 120°C and to T4 from -30°C to 40°C. Other separate temperature ranges can be found in chapter 5.1.3 Temperature and duty cycle limits.

Created by: Martin Bogert Revision date: 30 October 2025

2 Electrical characteristics

All necessary information and characteristic values can be found on the nameplate or in the table in the appendix or in the operating instructions. The specified values are nominal values and refer to average values at a coil temperature of approx. $20\,^{\circ}\text{C}$.

A voltage tolerance of **+5%** and **-10%** for the rated voltage, for direct current (DC) and alternating current (AC) and a permissible residual ripple of 20% applies to all explosion-protected DC solenoids. Magnet labelling

2.1 Data for magnet variants

2.1.1 For temperature class **T3**

K10			
Voltage	Current	Power	
V	Α	W	
230	0,19	43,0	
220	0,24	52,0	
210	0,23	47,4	
200	0,22	43,0	
125	0,45	55,7	
120	0,43	51,4	
110	0,43	46,9	
98	0,53	51,5	
48	1,00	48,1	
24	1,94	46,5	
20	2,62	52,4	

K15			
Voltage	Current	Power	
٧	Α	W	
230	0,25	58,4	
220	0,24	53,4	
210	0,29	60,6	
200	0,27	55,0	
125	0,50	63,1	
120	0,48	58,1	
110	0,55	60,1	
98	0,60	59,1	
48	1,09	52,1	
24	2,16	51,7	
20	2,29	45,7	

K20			
Voltage	Current	Power	
V	Α	W	
230	0,23	52,8	
220	0,28	61,4	
210	0,27	56,0	
200	0,25	50,8	
125	0,44	55,4	
120	0,43	51,1	
110	0,52	56,9	
98	0,54	53,1	
48	1,06	51,0	
24	2,61	62,5	
20	2,99	59,7	

K25				
Voltage	Current	Power		
V	Α	W		
230	0,25	58,3		
220	0,30	65,6		
210	0,35	73,0		
200	0,33	66,2		
125	0,50	61,9		
120	0,48	57,1		
110	0,58	63,7		
98	0,63	61,6		
48	1,64	78,9		
24	2,41	57,8		
20	3,23	64,5		

K32/40				
Voltage	Current	Power		
V	Α	W		
230	0,34	77,8		
220	0,40	87,6		
210	0,38	79,8		
200	0,46	91,5		
125	0,74	92,3		
120	0,69	83,2		
110	0,79	86,8		
98	0,88	86,5		
48	1,47	70,6		
24	3,33	80,0		
20	4,17	83,3		

K50				
Voltage	Current	Power		
V	Α	W		
230	0,42	96,2		
220	0,50	109,4		
210	0,47	99,7		
200	0,58	116,1		
125	0,90	112,4		
120	0,86	103,4		
110	0,98	107,3		
98	1,07	104,5		
48	2,00	96,0		
24	3,93	94,4		
20	5,02	100,5		

Created by: Martin Bogert Revision date: 30 October 2025

2.1.2 For temperature class **T4**

	K10			
Voltage	Current	Power		
V	Α	W		
230	0,19	43,0		
220	0,18	39,4		
210	0,23	47,4		
200	0,22	43,0		
125	0,36	44,6		
120	0,43	51,4		
110	0,43	46,9		
98	0,38	37,3		
48	1,00	48,1		
24	1,94	46,5		
20	2,01	40,2		

K15			
Voltage	Current	Power	
V	Α	W	
230	0,19	44,4	
220	0,24	53,4	
210	0,23	48,7	
200	0,27	55,0	
125	0,40	50,0	
120	0,38	46,1	
110	0,44	48,9	
98	0,49	47,7	
48	1,09	52,1	
24	2,16	51,7	
20	2,29	45,7	

K20				
Voltage	Current	Power		
V	Α	W		
230	0,23	52,8		
220	0,22	48,3		
210	0,27	56,0		
200	0,25	50,8		
125	0,38	47,2		
120	0,43	51,1		
110	0,39	42,9		
98	0,46	45,2		
48	1,06	51,0		
24	2,05	49,2		
20	2,17	43,4		

	K25	
Voltage	Voltage Current	
V	Α	W
230	0,25	58,3
220	0,30	65,6
210	0,28	59,7
200	0,27	54,2
125	0,41	51,1
120	0,48	57,1
110	0,58	63,7
98	0,52	50,5
48	1,20	57,7
24	2,41	57,8
20	3,23	64,5

K32/40		
Voltage	Voltage Current	
V	Α	W
230	0,34	77,8
220	0,40	87,6
210	0,38	79,8
200	0,36	72,4
125	0,52	65,4
120	0,71	85,1
110	0,79	86,8
98	0,88	86,5
48	1,47	70,6
24	3,33	80,0
20	4,17	83,3

	K50	
Voltage	Current	Power
V	Α	W
230	0,42	96,2
220	0,50	109,4
210	0,47	99,7
200	0,58	116,1
125	0,90	112,4
120	0,86	103,6
110	0,98	107,3
98	1,07	104,5
48	2,00	96,0
24	3,93	94,4
20	5,02	100,5

Created by: Martin Bogert Revision date: 30 October 2025

3 Device description

The type K _ electromagnet is used to drive directly controlled coaxial valves. These are manufactured in the basic functions NC (normally closed) and NO (normally open).

Version NC

When the rated voltage is applied, the electromagnet pulls the control tube against the pole core and the valve opens. When the supply voltage is switched off, a compression spring closes the valve again.

Version NO

When the rated voltage is applied, the electromagnet presses the control tube against the valve seat and the valve closes.

After switching off the supply voltage, a compression spring opens the valve again.

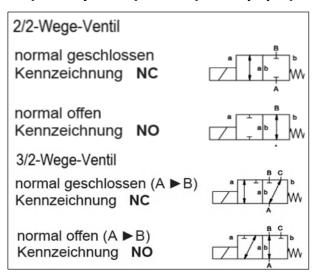


Figure 3-1: valve schematic

4 Mounting

4.1 Definition single valve

The minimum distance between the housing surfaces of two neighbouring valves must not be less than 100 mm. If the distance falls below this, the valves are regarded as a valve row.

4.2 Magnet row

The minimum distance between the housing surfaces of two neighbouring valves must not be less than 30 mm. The permissible ambient / medium temperature must be reduced by 10 Kelvin. The distance between two rows of solenoids must be at least 100 mm, as with individual solenoids.

4.3 Valve

The customer must ensure that no heat build-up can occur and that the valve is installed at a minimum distance of 15 mm from the nearest obstacle. If the associated mounting material is used for installation, the minimum distance to the mounting surface is guaranteed. Unhindered air circulation with the surroundings must be ensured.

The valves must be shielded against heat radiation from surrounding objects if their temperature is 10% (up to 60° C) or 5% (from 60° C) above the permissible ambient temperature.

Assembly and installation must be carried out by specialist personnel trained in explosion protection in accordance with the applicable installation standards, e.g. IEC 60079-14. The instructions in the general and additional installation and operating instructions must be followed.

Heat build-up must be avoided under all circumstances, therefore unhindered air circulation with the surroundings must be ensured. The valve must not be superstructed and must be installed at a minimum distance of 15 mm from the nearest obstacle.

Valves must always be installed in such way that

- the heat generated can be released unhindered into the environment
- no external forces act on the valve
- the nameplate is easily recognisable
- the valve can be inspected from all sides so that any necessary inspections and checks can be carried out

Created by: Martin Bogert Revision date: 30 October 2025

The customer must ensure that the prescribed distances and installation specifications are observed if space is limited, or several valves are installed next to each other. If the valves are arranged vertically, the rising heated air must not exceed the permissible ambient temperature under any circumstances.

5 Technical data and operating conditions

The electrical data and the power-dependent data for the operating conditions can be found in *Table 2 Duty cycle direct current* and *Table 3 Duty cycle alternating current*.

If the operating conditions require intermittent operation, the off-time must be calculated according to the duty cycle using the formula in *Figure 5-1*.

The following tables contain the electrical and design-dependent data.

 T_{amb} indicates the medium and ambient temperature. $T_{amb\,max}$ varies depending on the temperature class, operating mode and the distinction between single valve or valve series.

5.1 Operation mode/ duty cycle

5.1.1 continous

In continuous operation, there is no limit to the duty cycle. In this case, the relative duty cycle (ED%) is 100%.

5.1.2 intermittent

The relative duty cycle depends on the valve series and the ambient / medium temperature. In intermittent operation, the maximum duty cycle is limited to 6 min (360 s). The maximum duty cycle and the ratio of duty cycle to cycle length are specified (see also *Table 2* and *Table 3*).

The required minimum switch-off time (currentless pause) t_p must be calculated using the formula in *Figure 5-1: Formulas for calculating duty cycle*. The calculated time t_p must always be rounded up to the next full time unit. t_p t_i

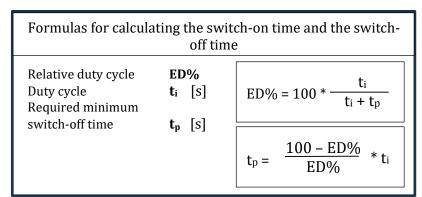


Figure 5-1: Formulas for calculating duty cycle

Example:

Single valve with switch-on time of 19 Seconds. given: ED 30%

$$t_p = \frac{100 - ED\%}{ED\%} * t_i = \frac{100\% - 30\%}{30\%} * 19 s = 44,33 s$$

The de-energised break is = 45 seconds.

It must always be rounded up to the nearest whole number!

Created by: Martin Bogert Revision date: 30 October 2025

5.1.3 Temperature and duty cycle limits

The following values only apply to the use of direct current

Voltage	max. ambient temperature	Duty cycle	Temperature class
DC 20-230 V	40 °C	100 %	T4
DC 20-230 V	60 °C	50 %	T4
DC 20-230 V	80 °C	30 %	T4
DC 20-230 V	120 °C	100 %	Т3

Table 2: Duty cycle direct current

The following values only apply to the use of alternating current

Voltage	max. ambient temperature	Duty cycle	Temperature class
AC > 98 V	40 °C	100 %	T4
AC > 98 V	60 °C	50 %	T4
AC > 98 V	80 °C	30 %	T4
AC ≤ 98 V	40 °C	100 %	T4
AC ≤ 98 V	60 °C	50 %	T4
AC ≤ 98 V	80 °C	30 %	T4
AC > 98 V	120 °C	100 %	Т3
AC ≤ 98 V	100 °C	100 %	Т3

Table 3: Duty cycle alternating current

Caution:

If the distance between two neighbouring valve surfaces is less than 100 mm, these are to be considered as a valve series. In this case, the specifications for the valve series must be applied.

5.2 Terminal box

The terminal box shields the electrical connection and magnet parts against the explosive atmosphere of the environment. If the terminal box is detached, loosened or disassembled from the magnet, this protection is no longer guaranteed and the magnet may no longer be used in explosion-protected areas.

5.2.1.1 Terminal strip

Feed-through terminal blocks with ceramic insulation and screw connection are used to contact the solenoid. The terminal block is designed for wiring and connecting electrical conductors in terminal compartments. The earth conductor connection is made via the terminal blocks in conjunction with the mounting rail and terminal box. If the clamping unit, mounting rail or terminal box are loosened, detached or dismantled, this protection is no longer guaranteed and the solenoid may no longer be used in explosion-protected areas.

Note: The ceramic insulation is very sensitive, which is why lateral pressure must be avoided under all circumstances. The screwdriver head must not protrude sideways over the head of the clamping screw.

Created by: Martin Bogert Revision date: 30 October 2025

5.2.1.2 Protective conductor

The external potential equalisation connection has a clamping capacity of 4 mm². The connecting cable must be approved for the following temperature range:

For T4 from -30°C to +130°C For T3 from -30°C to +180°C

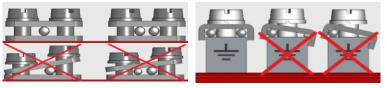


Figure 5-2: Connection Potential equalisation outside

5.3 Electrical Installation

5.3.1 Terminal connection

In addition to the generally recognised rules of technology, the German Equipment Safety Act and the regulations of the Industrial Safety Regulation (BetrSichV) must be observed. The solenoid is manufactured and supplied by the manufacturer as standard without a connection cable.

The connecting cable must be protected against mechanical damage, laid securely and with appropriate strain relief. The temperature resistance of the connecting cable must correspond to the temperature range of the application. This means a range of -30°C to +130°C for T4 and -30°C to +160°C for T3. If there is a possibility that the cable will come close to or touch the magnetic surface, a connection cable with a temperature resistance of -30°C to +180°C must be used. The cross-section of the connecting cable must not exceed 4mm^2 , but must be at least 0.75mm^2 .

The maximum permissible cable diameter is limited by the installed cable gland. The customer must ensure that the insulation of the wires ends within the terminal insulation at the terminal point. For the permissible current load for the conductor cross-section, see *Table 5-3*.

Figure 5-3-1: Terminal box with terminal strips

Created by: Martin Bogert Revision date: 30 October 2025

5.3.2 Connection cable (variant with integrated rectifier board)

For solenoids with an integrated rectifier board, a connection cable with the appropriate cable cross-section and temperature compatibility is soldered on. The strain relief is integrated in a corresponding certified cable entry.

Figure 5-1-2: Terminal box with soldered connection cable

5.3.3 Potential equalisation

If the potential equalisation is not established by the valve installation, the potential equalisation must be connected to the outer terminal of the terminal box.

(see Figure 5-2: Connection Potential equalisation outside).

5.3.4 Maximum permissible conductor current

Cable cross section	Maximum current
\geq 0,75 mm ²	0,5 A
\geq 1,0 mm ²	1,5 A
≥ 1,5 mm ²	8,0 A

Table 4: Maximum conductor cross-section-dependent amperage

5.3.5 Cable gland

If the standard cable gland is not used, the attached instructions must be observed

- For information on using the cable gland and the outer cable diameter, see 8.1 Mounting of cable in gland
- The connection cable must be selected in accordance with the applicable installation standards such as IEC 60079-14 and the specifications under *5.5 Electrical Installation*.
- The outer diameter of the connection cable must be adapted to the sealing area of the cable entry (see 8.1 Mounting of cable in gland). The connection is made using a cable permanently installed by the customer and the customer must provide appropriate strain relief
- The connecting cable must be protected against mechanical damage.

Created by: Martin Bogert Revision date: 30 October 2025

5.3.6 Conduit Adapter

The conduit adapter approved by müller co-ax gmbh may also be used as a cable entry. In this case, the connected conduit adapter must be terminated in an enclosure that fulfils a degree of protection of at least IP 54 in accordance with IEC 60079-0.

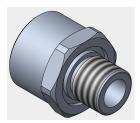


Figure 5-4: Conduit adapter, approved proprietary product from müller co-ax gmbh

5.3.7 Special conditions for installation

A fuse corresponding to its rated current (max. 3 x I B in accordance with IEC 60127) or a motor circuit breaker with short-circuit and thermal fast tripping (set to rated current) must be connected upstream of each solenoid as short-circuit protection.

The rated fuse voltage must be equal to or greater than the specified rated voltage of the solenoid. The breaking capacity of the fuse link must be equal to or greater than the maximum short-circuit current to be assumed at the installation location (usually 1500 A).

5.3.8 Connection the power supply

The polarity of the electromagnet is arbitrary. Strip the conductors to the specified length (see technical data). Flexible conductors can be fitted with wire end ferrules. Crimp the ferrules using crimping pliers and ensure that the test requirements in accordance with DIN 46228 Part 4 are met. The length of the copper ferrules must correspond to the specified stripping length of the conductor. Insert the conductor into the clamping point as far as it will go. Tighten the screw of the terminal point, observing the specified torque range. Recommendation: Tighten all screws, including those of the unused terminal points.

5.3.9 Protective conductor inside

The protective conductor is connected to the terminal box as an earthing screw and as a protective-conductor-terminal-block via the screw connection of the support rail. Strip the conductors to the specified length (*see technical data*). Flexible conductors can be fitted with wire end ferrules. Crimp the wire end ferrules using crimping pliers and ensure that the test requirements in accordance with DIN 46228 part 4 are met. The length of the copper ferrules must correspond to the specified stripping length of the conductor. Insert the conductor into the clamping point as far as it will go. Tighten the screw of the clamping point and observing the specified torque range.

Recommendation: Tighten all screws, including those of the unused terminal points.

6 Commissioning

The valve may only be commissioned when:

- It has been correctly installed and connected into the system.
- It has been checked for proper installation and connection conditions

Before commissioning, the operator of the system must arrange a test that complies with the national regulations for testing before commissioning.

Created by: Martin Bogert Revision date: 30 October 2025

7 Operation and maintenance

- Regular inspections are required in potentially explosive atmospheres in order to maintain proper condition.
- Recommended are:
 - o Checking supply lines and valve bodies for corrosion.
 - Checking the pipe connections for leaks.
 - o Checking the electric connection cable for intactness.

7.1 Help with malfunctions

Type of malfunction	Possible cause/ remedy	note
Valve does not switch or switches with a delay.	 Checking of Connections, switches, relays and fuses. Switching voltage and current consumption. For nominal values of the valve, see nameplate 	The coil resistance is temperature-dependent. The warmer the valve, the lower the current consumption.
Valve does not switch, switches with a delay or slowly. Voltage and current consumption are OK.	Valve jammed (mechanical fault) caused by • Foreign body in the valve. • the effect of external forces. • Deposits in the valve. • media pressure too high.	Remove the valve for inspection. If possible, flush out foreign bodies and/or deposits with the valve opened. Attention: Certified valves must not be dismantled or repaired!
Valve does not switch. Voltage is present, but no current is flowing.	Power supply cut off by: • detached conductor • cable / conductor breakage • Solenoid coil defective	The coil connection cable has come loose or is broken. Solenoid coil is defective.
Valve gets hot	 Process temperature too high Ambient temperature too high Insufficient heat radiation due to insufficient distances (see point 4 Mounting) Winding fault in the coil (replace valve). 	Allow the valve to cool down, then measure the current and voltage at temperatures between 15°C and 25°C. Compare the measured values with the values on the nameplate. If the current consumption is too high, this indicates a short circuit in the winding.
Valve leaking without current (sealing by spring force) Leakage between seat and control tube	 Foreign body in the valve. Effect of external forces. Deposits in the valve. Medium pressure too high in flow direction BA. Valve seat or control tube damaged (replace valve) Spring breakage (replace valve) 	Remove the valve for inspection. If possible, flush out foreign bodies and/or deposits with the valve opened. Attention: Certified valves must not be dismantled or repaired!

Created by: Martin Bo	gert
Revision date: 30 October 2	2025

Valve powered and leaking (sealing by magnetic force) Leakage between seat and control tube	 Foreign body in the valve. Effect of external forces. Deposits in the valve. Medium pressure too high in flow direction BA. Valve seat or control tube damaged (replace valve) Magnetic force too low (see point Valve does not switch or switches with a delay). 	Remove the valve for inspection. If possible, flush out foreign bodies and/or deposits with the valve opened. Attention: Certified valves must not be dismantled or repaired!
---	--	--

Table 7-1: Help with malfunctions

7.2 Maintenance

The valves in the K valve series are maintenance-free. However, we recommend regularly checking the function and tightness at the following test intervals:

	Interval after switching cycles		vcles	
Valve type	First check After number of switching cycles	Additional checks depending on the number of switching cycles	Interval after time (if the switching cycles have not been reached)	
K10 - K25	750.000	500.000	At least 1-time in 12 months	
K32 - K50	500.000	250.000	At least 1-time in 12 months	

The recommendations are based on optimum operating conditions, i.e. operation at room temperature, good filtration of the medium, etc.. In the case of heavier loads, e.g. increased temperatures, abrasive media, etc., the test intervals must be adjusted accordingly at the discretion of the operator.

Performing the functional test:

At least three switching operations, after which the valve must return safely to the home position each time.

NC-Version = Valve (in home position) must close reliably after switching NO-Version = Valve (in home position) must open reliably after switching

The sealing behaviour must still be present to a sufficient level.

⇒ In the event of a malfunction, repair of the valve, reporting back to the manufacturer

Performing the leak test:

Perform a visual inspection for a possible external leak. Use leak detection spray for gaseous media.

7.3 Operation duration

Under optimum operating conditions, i.e. operation at room temperature, good filtration of the medium, etc., a service life of approx. 5 years can be assumed. In the case of heavier loads, e.g. high temperatures, abrasive media, very frequent switching cycles, etc., the service life may be reduced accordingly.

Created by: Martin Bogert Revision date: 30 October 2025

7.4 Repair magnet/ valve

If solenoids are defective, the complete valves must be replaced, as the complete valve is considered for mechanical explosion protection in accordance with DIN EN ISO 80079-36 and DIN EN ISO 80079-37.

- If a valve is defective, the entire valve must be sent to the manufacturer's factory for repair.
- Spare parts for on-site repairs can only be supplied after consultation with the service centre.
- Maintenance may only be performed by the manufacturer, its authorised representative or under the supervision of authorised experts.

7.4.1 Disassemlby

In general, only the entire valve can be replaced. The operator is responsible for proper removal and installation.

The valve may only be removed and replaced when it is de-energised and depressurised.

Caution!

- Relieve the pressure in pressurised lines before removing the valve and drain as far as possible.
- In the case of hazardous or environmentally critical media, safety precautions must be taken with regard to the remaining media in the valve.
- When reinstalling the valve in the piping system, the seals must be replaced.

Created by: Martin Bogert Revision date: 30 October 2025

8 Appendix

blueglobe® 03.2012 · 37

Created by: Martin Bogert Revision date: 30 October 2025

8.1 Mounting of cable in gland

Anzugsmomente von Kabelverschraubungen
Tightening torques of cable glands

Herstellerangaben für Anzugsmomente von Kabelverschraubungen gemäß EN 50262
Für Wandungen mit Innengewinde und bei Durchgangsbohrungen mit Gegenmutter

Manufacturer guideline for tightening torques of cable glands as per EN 50262
Into a housing with inner thread or in case of through holes into the lock nut

Gewindegrößen	Metall	Kunststoff
Thread size metric	Metal	Plastic
M10	3 Nm	-
M12	5 Nm	1,5 Nm
M16	8 Nm	4,5 Nm
M20	10 Nm	8,0 Nm
M25	15 Nm	10,0 Nm
M32	15 Nm	12,0 Nm
M40	20 Nm	14,0 Nm
M50	30 Nm	25,0 Nm
M63	35 Nm	30,0 Nm
M75	80 Nm	-

M85

Figure 8-1: Mounting instructions for cable

Created by: Martin Bogert Revision date: 30 October 2025

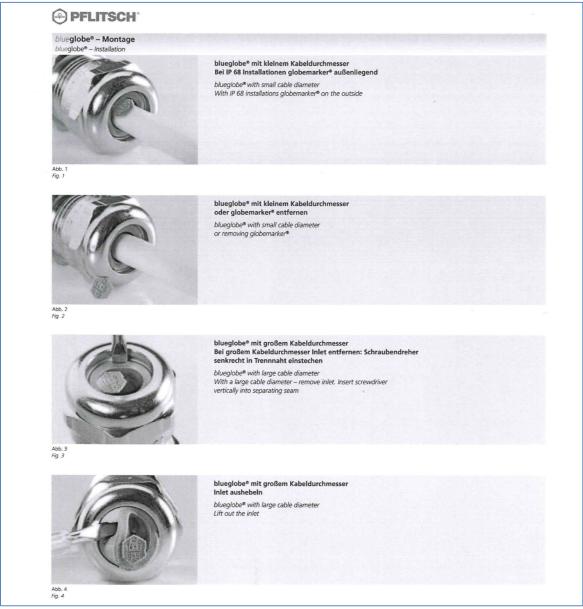


Figure 8-2: Mounting instructions for cable

8.2 Torque details

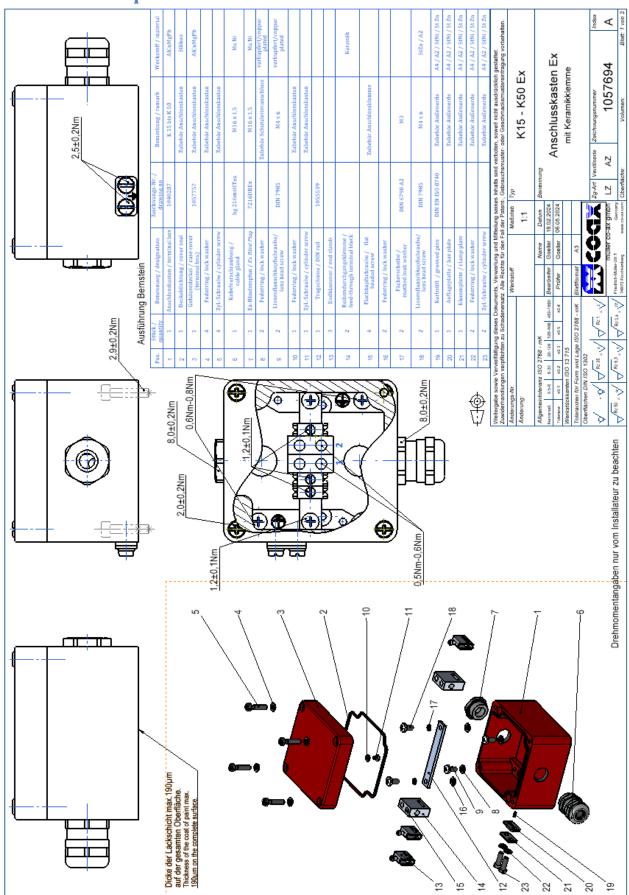


Figure 8-3: Torque specifications for installation

Created by: Martin Bogert Revision date: 30 October 2025

9 ATEX-certificate

Homepage: www.co-ax.com

10 IECEx-certificate

Homepage: www.co-ax.com